影响钢材脆性的因素(影响钢材脆性破坏的因素有哪些?)

博主:adminadmin 2022-11-27 09:36:09 条评论
摘要:本篇文章给大家谈谈影响钢材脆性的因素,以及影响钢材脆性破坏的因素有哪些?对应的知识点,希望对各位有所帮助。钢结构发生...

本篇文章给大家谈谈影响钢材脆性的因素,以及影响钢材脆性破坏的因素有哪些?对应的知识点,希望对各位有所帮助。

钢结构发生脆性破坏的主要原因是什么?

影响钢材脆性的因素(影响钢材脆性破坏的因素有哪些?)

脆性断裂破坏大致可分为以下几类。 ①过载断裂:由于过载, 钢材强度不足而导致的断裂。这种断裂破坏发生的速度通常极高(可高达2 100 m/s),后果极其严重.在钢结构中,过载断裂只出现在高强钢丝束、钢绞线和钢丝绳等脆性材料做成的构件。 ②非过载断裂:塑性很好的钢构件在缺陷、低温等因素影响下突然呈脆性断裂。 ③应力腐蚀断裂:在腐蚀性环境中承受静力或准静力荷载作用的结构,在远低于屈服极限的应力状态下发生的断裂破坏称为应力腐蚀断裂。它是腐蚀和非过载断裂的综合结果。一般认为,强度越高则对应力腐蚀断裂越敏感。而对于常见碳钢和低合金钢而言,屈服强度大于700 MPa时,才表现出对应力腐蚀断裂的敏感性. ④疲劳断裂与腐蚀疲劳断裂:在交变荷载作用下,裂纹的失稳扩展导致的断裂破坏称为疲劳断裂;腐蚀性介质的作用,会对构件的疲劳寿命产生更显著的不利影响。近年来,由于海洋工程结构的发展,腐蚀疲劳已经成为疲劳研究的一个重要课题。疲劳断裂有高周和低周之分。循环周数在10以上者称为高周疲劳,属于钢结构中常见的情况。低周疲劳断裂前的周数只有几百或几十次,每次都有较大的非弹性应变.典型的低周疲劳破坏往往产生于强烈地震作用下。 ⑤氢脆断裂:氢可以在冶炼和焊接过程中侵人金属,造成材料韧度降低导致断裂。焊条在使用前需要烘干,就是为了防止氢脆断裂. 钢结构脆性破坏在铆接结构时期就已经有所发生,不过为数不多,因而没有引起人们的重视;在焊接逐渐取代铆接的时期,脆性破坏事故增多。从1938年发生比利时哈塞尔特的全焊空腹析架桥破坏到1960年止,除船舶外,世界各地至少发生过40起引人注目的大型焊接结构破坏事故。 焊接结构出现脆性破坏事故比铆接结构频繁,其原因如下。 ①焊缝经常会或多或少存在一些缺陷,如裂纹、欠焊、夹渣和气孔等,这些缺陷往往成为断裂的起源。 ②焊接后钢结构内部存在残余应力。残余应力未必是破坏的主因,但和其他因素结合在一起,可能导致开裂。 ③焊接钢结构的连接处往往有较大刚性,当出现三条相互垂直的焊缝时,材料的塑性变形就很难发展。给出焊接区应力一应变关系曲线和原材料应力一应变曲线的对比。 ④焊接使结构形成连续的整体,一旦裂缝开展,就有可能一断到底,不像在铆接结构中,裂缝常常在接缝处终止。 ⑤对选材在防止脆性破坏中的重要性认识不足。 钢结构脆性破坏事故的不断发生,除了采用焊接外,还有以下原因:结构比过去复杂,有些结构的使用条件恶劣(如海洋结构),有的荷载很大,钢材强度和钢板厚度都有提高和增大的趋势,设计时采用更精细的计算方法并利用材料非弹性性能以降低造价,致使结构的实际安全储备比过去有所降低。这些因素综合在一起,发生脆断的概率就会提高。

影响钢材发生冷脆的化学元素是哪些

影响钢材发生冷脆的化学元素主要有氮和磷,而使钢材发生热脆的化学元素主要是氧和硫。

对于钢材,脆性越高其硬度越大,抗弯曲强度越高,而对于塑性较强的钢材来说正好与之相反,塑性强度大的钢材其硬度低,易弯曲不易折断,对于这两种钢材来说其性能有明显的差别。

冷脆性只发生在具有体心立方晶格的金属中。锅炉与压力容器中广泛采用的低碳钢及低合金钢都是体心立方晶格型,所以会发生遇冷变脆的现象。而面心立方晶格的金属,如铝、铜、镍都不会产生冷脆现象。

扩展资料:

加工硬化降低了钢材的韧性,同时使韧脆转变温度增加。这种影响随钢材类型不同及加工硬化量的大小而变化。对于冲压封头,试验结果表明,冷压封头的韧脆转变温度高于热压封头,且冲击韧度值也有所减小。

对于冷脆性的材料会在温度变低的情况下脆性急剧增加,因此,选用冷脆性材料时因注意使用的环境以及温度等的影响因素,尽量避免不必要的意外发生,在选材时要把温度对钢材的影响因素考虑在内。

哪些因素可使钢材变脆

从理论角度来讲影响钢材脆性的主要因素是钢材中硫和磷的含量问题;

如果工艺路线不经过热处理那么这个因素影响就小一些;

如果工艺路线走热处理这一步(含锻打,铸造)那么这个影响就相当的明显;

就必须采取必要的措施;

1;

设计选材上尽量避开对热影响区和淬火区敏感的材料;

2不得已而用之那么就要在工艺上采取预防措施;

建议再仔细查阅一下金属材料学;

3设计过程中采取防脆断措施如工艺圆角;

加强筋;

拔模等;

有很多;

建议查阅机械设计手册中的工艺预防措施和手段;

请问钢材的低温冷脆性,影响脆性破坏的因素是哪些?

低温冷脆性是指钢在低温状态下由韧性转化为脆性进而发生破坏的现象。影响低温脆性的因素很多,它不仅取决于晶格类型,还受材料的成分、组织等因素的影响.分别讨论材料成分、晶粒尺寸、显微组织对低温脆性转变温度的影响。可以从两个方面来解释:宏观上材料的断裂强度与屈服强度与温度有关系,对称度低的金属这个特点就更明显,一般是材料的断裂强度随温度的降低而减小,屈服强度会增加。这两个函数在脆韧转变温度处相交,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。

从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,阻力增大,则材料屈服强度也相应增加,因为材料在塑性变形时主要依靠位错运动来完成的。对对称性低的金属,合金而言,温度降低位错运动的点阵阻力增加,原子热激活能力下降。因此材料屈服强度增加。

影响材料脆韧转变的因素有:

1.晶体结构,对称性低的体心立方以及密排六方金属,合金转变温度高,材料脆性断裂趋势明显,塑性差;

2.化学成分,能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高;

3.显微组织,显微组织包含以下几个方面的影响:晶粒大小,细化晶粒可以同时提高材料的强度和塑性,韧性。细化晶粒提高材料韧性原因为,细化晶粒可以使基体变形更加均匀,晶界增多可以有效的阻止裂纹的扩张,因塑性变形引起的位错的塞积因晶界面积很大也不会很大,可以防止裂纹的产生;金相组织;

4.温度的影响:温度影响晶体中存在的杂质原子的热激活扩散过程,定扎位错原子气团的形成会使得材料塑性变差。

5.加载速度的影响:提高加载速度如同降低材料的温度,使得材料塑性变差,脆化温度升高。

6.试样形状以及尺寸的影响。

哪些因素可使钢材变脆,从设计角度防止构件脆断的措施有哪些

导致钢结构构件脆性断裂的因素很多,主要因素有化学成份 、温度、构件厚度、冶金缺陷、构造缺陷等。钢中碳元素含量增高会使钢的脆性转变温度升高 ,随含碳量的增加 , 钢的最大恰贝冲击值显著降低。恰贝冲击值与试验温度曲线梯度趋于缓慢 ,而脆性转变温度显著升高。

预防措施:

(1)、 设计构件的断面应尽量选用最薄断面 ,增加构件厚度将增大脆断的危险 .

(2)、保证焊接质量,尽量减少因焊接造成的缺陷,设计上应选择适当的焊缝金属缺口韧性,较厚板材或型钢焊前必须预热,施焊过程中尽量不在负温条件下进行 ,焊接后必须保温缓冷,尽量保证焊接质量,减少缺陷产生。

(3)、设计焊接结构应尽量避免焊缝集中和重叠交叉。要采用较好的焊接工艺(合适的输入热量和操

作方法)。

(4)、在结构设计中应尽量将因缺陷引起的应力集中减小到最低限度 , 如避免尖锐角 ,尽量用较大半

径的圆弧 。

(5)、设计人员选用钢材时 ,除应核算强度外,还应保证材料有足够韧性 ,应从断裂力学理论出发选择具有较高断裂韧性的材料。

扩展资料:

钢材用途分类:

1、结构钢

(1)、建筑及工程用结构钢简称建造用钢,它是指用于建筑、桥梁、船舶、锅炉或其他工程上制作金属结构件的钢。如碳素结构钢、低合金钢、钢筋钢等。

(2)、机械制造用结构钢是指用于制造机械设备上结构零件的钢。这类钢基本上都是优质钢或高级优质钢,主要有优质碳素结构钢、合金结构钢、易切结构钢、弹簧钢、滚动轴承钢等

2、工具钢

一般用于制造各种工具,如碳素工具钢、合金工具钢、高速工具钢等。按用途又可分为刃具钢、模具钢、量 具钢。

3、特殊钢

具有特殊性能的钢,如不锈耐酸钢、耐热不起皮钢、高电阻合金、耐磨钢、磁钢等。

4、专业用钢

这是指各个工业部门专业用途的钢,如汽车用钢、农机用钢、航空用钢、化工机械用钢、锅炉用钢、电工用钢、焊条用钢等。

5、按钢的品质分

优质碳素结构钢、合金结构钢、碳素工具钢和合金工具钢、弹簧钢、轴承钢等

钢号后面,通常加符号“A”或汉字“高”以便识别。

参考资料来源:知网-钢结构构件脆性断裂的分析及控制措施

引起钢材脆性破坏的主要因素有哪些?应如何防止脆性破坏的发生呢?

钢材的破坏分塑性破坏和脆性破坏两种。

脆性破坏:加载后,无明显变形,因此破坏前无预兆,断裂时断口平齐,呈有光泽的晶粒状。脆性破坏危险性大。

影响脆性破坏的因素

1.化学成分

2.冶金缺陷(偏析、非金属夹杂、裂纹、起层)

3.温度(热脆、低温冷脆)

4.冷作硬化

5.时效硬化

6.应力集中

7.同号三向主应力状态

1 ) 钢材质量差、厚度大:钢材的碳、硫、磷、氧、氮等元素含量过高,晶粒较粗,夹杂物等冶金缺陷严重,韧性差等;较厚的钢材辊轧次数较少,材质差、韧性低,可能存在较多的冶金缺陷。

(2) 结构或构件构造不合理:孔洞、缺口或截面改变急剧或布置不当等使应力集中严重。

(3) 制造安装质量差:焊接、安装工艺不合理,焊缝交错,焊接缺陷大,残余应力严重;冷加工引起的应变硬化和随后出现的应变时效使钢材变脆。

(4) 结构受有较大动力荷载或反复荷载作用:但荷载在结构上作用速度很快时(如吊车行进时由于轨缝处高差而造成对吊车梁的冲击作用和地震作用等),材料的应力- 应变特性就要发生很大的改变。随着加荷速度增大,屈服点将提高而韧性降低。特别是和缺陷、应力集中、低温等因素同时作用时,材料的脆性将显著增加。

(5)在较低环境温度下工作:当温度从常温开始下降肘,材料的缺口韧性将随之降低,材料逐渐变脆。这种性质称为低温冷脆。不同的钢种,向脆性转化的温度并不相同。同一种材料,也会由于缺口形状的尖锐程度不同,而在不同温度下发生脆性断裂。

为了防止钢材的脆性断裂,可以从以下几个方面着手:

1、裂纹

当焊接结构的板厚较大时(大于25mm),如果含碳量高,连接内部有约束作用,焊肉外形不适当,或冷却过快,都有可能在焊后出现裂纹,从而产生断裂破坏。针对这个问题,把碳控制在0.22%左右,同时在焊接工艺上增加预热措施使焊缝冷却缓慢,解决了断裂问题。

焊缝冷却时收缩作用受到约束,有可能促使它出现裂纹。措施是:在两板之间垫上软钢丝留出缝隙,焊缝有收缩余地,裂纹就不会出现。

把角焊缝的表面作成凹形,有利于缓和应力集中。凹形表面的焊缝,焊后比凸形的容易开裂,原因是凹形缝的表面有较大的收缩拉应力,并且在45截面上焊缝厚度最小。凸形缝表面拉力不大,而45截面又有所增强,情况要好的多。在凹形焊缝开裂的条件下,改用凸形焊缝,就不再开裂。

2、应力

考察断裂问题时,应力是构件的实际应力,它不仅和荷载的大小有关,也和构造形状及施焊条件有关。几何形状和尺寸的突然变化造成应力集中,使局部应力增高,对脆性破坏最为危险。施焊过程造成构件内的残余拉应力,也是不利的。因此,避免焊缝过于集中和避免截面突然变化,都有助于防止脆性断裂。

3、材料选用

为了防止脆性断裂,结构的材料应该具有一定的韧性。材料断裂时吸收的能量和温度有密切关系。吸收的能量可以划分为三个区域,即变形是塑性的、弹塑性的和弹性的。要求材料的韧性不低于弹性,以避免出现完全脆性的断裂,也没有必要高于弹塑性,对钢材要求太高,必然会提高造价。钢材的厚度对它的韧性也有影响。厚钢板的韧性低于薄钢板。

4、构造细部

发生脆性断裂的原因是存在和焊缝相交的构造缝隙,或相当于构造缝隙的未透焊缝。构造焊缝相当于狭长的裂纹,造成高度的应力集中,焊缝则造成高额残余拉应力并使近旁金属因热塑变形而时效硬化,提高脆性。低温地区结构的构造细部应该保证焊缝能够焊透。因此,设计时必须注意焊缝的施工条件,以保证施焊方便,能够焊透。

影响钢材脆性的因素的介绍就聊到这里吧,感谢你花时间阅读本站内容。